

The Language Metadata Table (LMT)

V2.1 Release NAB-NY, October 17, 2019

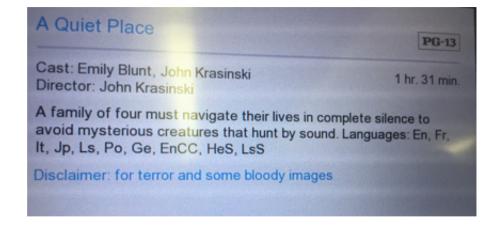
Yonah Levenson, LMT Chair

LMT Committee Members & Contributors include:

Language Metadata: Problem Statement

The broadcast and media industry, as well as others, does not have a single unified standard of language terminology.

RESULT:


Each point of distribution/information exchange creates their own language code table, thus creating a kind of Tower of Babel.

Ex: Consumer Facing Language Display

Why Create LMT?

- Language metadata is used by every aspect of media & entertainment, but is rarely standardized between systems or across supply chains.
- There was a need for a more flexible, granular, and modular language standard, applicable in both broad and narrow contexts.
- People are often confused or overwhelmed by all the options available.
- LMT includes values for several language applications in the media and entertainment industries, including codes for:
 - Audio and timed text for content
 - Visual or written languages for display on storefronts and packaging
 - Rights and Licensing localization
 - Distribution territories
 - Accessibility for the visually and hearing impaired

LMT Scope

- Used to populate the language elements of an asset, e.g. text, audio
- Languages only; regions and territories are a separate discussion
- Notation of script/writing system where necessary
- Includes
 - Endonyms: Language name in the country's language. Ex: Français
 - Exonyms: Language name as spoken in other countries. Ex: Französisch

LMT Mission Statement

The Language Metadata Table (LMT) was created to provide a unified source of reference for language codes for use throughout the media and entertainment industries. LMT's mission is:

- To create a standardized table of language codes for implementation by entertainment and other industries using IETF BCP 47 (a.k.a., RFC 5646).
- To facilitate efficient and consistent LMT usage through best practices.
- To extend LMT code values through vetted field definitions and approved language code values with a community of thought leaders who focus on information and data from the business, professional associations and academic institutions through the exchange of knowledge and collaboration.

LMT History

- The Language Metadata Table (LMT) initiative began at HBO in 2017 to normalize language codes and provide a unified source of reference throughout the enterprise.
- The initial table had 128 languages, each with a production use case.
- In July 2018, MESAlliance invited HBO to share their language tables as the basis of an industry standard. A working group was formed with representatives from studios, post houses, and other media affiliates and companies.
- In August 2018, LMT v1.0 was published with 128 languages.
- In September 2019, LMT v2.1 was published with over 200 languages, including best practices.

Advantages to Adopting LMT

- Allows standard distinctions between spoken and written languages
- Provides flexibility for capturing language metadata for various departments
- Having a working group to manage the LMT can better account and coordinate the changing nature of languages
- Allows for better communication and the same labeling between service providers, clients, and content owners

LMT Use Cases

- Licensing international content
 - As the industry seeks to scale new content development, more organizations are looking at international productions to expand inventory
- Distributing non-English content
 - As that international content gets distributed, platforms need metadata describing the language elements: audio tracks, subtitles, UI, etc.
 - Geographic information needs to be considered as part of the distribution metadata
- Accessibility requirements
 - How are closed-captions and other accessible elements described to the end-user?
- End-user localization preferences
 - Consumers want to view both content and settings in their desired languages wherever they are viewing, watching, and/or listening
 - UI/UX preferences

LMT Implementation Examples

- Audio: Allows for standard description of the audio languages corresponding to content to a provider or client
- Closed Captions: LMT can distinguish between the audio language of the content and the caption or written language when sending materials to a vendor
- Burned In or Forced Narratives: Physical signs in the content often appear in different written language than subtitles for audio language
- Accessibility: Visual description or American Sign Language can be distinguished from other languages for the content
- Acquisition/Rights: The overall language can be used to show territorial or distribution for content that rolls up any audio or other languages
- Electronic Sell-Through Partners: Languages for viewing can be displayed on the screen in the correct dialect vs the subtitle or audio languages

IETF BCP 47

- IETF: Internet Engineering Task Force (a.k.a, the Internet people)
- BCP: Best Current Practice
- BCP 47: Tags for Identifying Language
- IETF BCP 47 defines a standard application of:
 - ISO 639: 2- and 3-character Language codes
 - ISO 3166: 2-character Country codes
 - UN M. 49: 3-digit numeric Territory codes
 - ISO 15924: 4-character Script codes
- IETF BCP 47 works because
 - Language, dialect, script, and geographic codes can be combined in more than 40K ways
 - From the general: en for English
 - To the specific: fr-FR vs. fr-CA to distinguish Parisian French from Quebecoise
 - Codes under regular review to keep the lists current:
 - "Greenlandic" updated to "Kalaallisut" to reflect contemporary cultural norms
 - A WWW standard supported by W3C (a.k.a., the Web people) for HTML, XML, etc.

Anatomy of a Language Code

- Full code syntax: language-script-region-variant-extension-privateuse
 - e.g., mn-Cyrl-MN for Mongolian written in Cyrillic as used in Mongolia
- Selecting from 9,000 subtags to create 40,000 combinations can be overwhelming.
- LMT provides commonly used codes supported by use cases in actual use, pre-constructed for easy reference.
- Within LMT, language groupings are explicitly defined easy enough for Spanish, but hard for Chinese
- For each language, several fields are used to identify the standard:
 - Language Group Name, Tag, Code
 - Audio language tags and displays
 - Visual language tags and displays
 - Descriptions

LMT Example

Column Header Name	Example 1: English	Example 2: Spanish	Example 3: Serbian	Example 4: Mandarin	Example 5: Armenian (Eastern)	Example 6: Armenian (Western)	Example 7: American Sign Language
Language Group Name	English	Spanish	Serbo-Croation	Chinese	Armenian Family	Armenian Family	
Language Group Tag	en	es	sh	zh	hyx hyx		
Audio Language Tag	en	es-419	sr	cmn	hy	hyw	
Long Description 1	English	Spanish as Spoken in Latin America	Serbian	Mandarin	Armenian	Armenian as spoken by the Armenian Diaspora	•
Long Description 2							
Audio Language Display Name 1	English	Español como se habla en América Latina	Srpski	普通 话	արեւմտահայերէն	հայերեն	
Audio Language Display Name 2			cpncka				
Visual Language Tag 1	en	es-419	sr-Latn-RS	zh-Hans	hy	hyw	ase
Visual Language Tag 2			sr-Cyrl-RS				
Visual Language Display Name 1		Español como se habla en América Latina	Srpski	简体中文	արեւմտահայերէն	հայերեն	American Sign Language
Visual Language Display Name 2			cpncka				

ISDCF and LMT: Differences & Discussions

Audio Language Tag	Long Description 1	Visual Language Tag 1	Visual Language Display Name 1		
yue	Chinese - Cantonese - ISDCF only	yue	Chinese - Cantonese - ISDCF only		
	Chinese - Mandarin Simplified - ISDCF Only	cmn-Hans	Chinese - Mandarin Simplified - ISDCF Only		
	Chinese - Mandarin Traditional - ISDCF Only	cmn-Hant	Chinese - Mandarin Traditional - ISDCF Only		
et	Estonian - ISDCF Only	et	Estonian - ISDCF Only		
vls	Flemish - ISDCF only	vls	Flemish - ISDCF only		
gsw	German – Swiss - ISDCF Only	gsw	German – Swiss - ISDCF Only		
ky	Kyrgyz - ISDCF Only	ky	Kyrgyz - ISDCF Only		
es -AR	Spanish – Argentina - ISDCF only	es -AR	Spanish – Argentina - ISDCF only		

- Source of truth? LMT or existing ISDCF
 - How hard is it for existing users to switch? Timeframe needed?
- LMT has more languages than ISDCF
 - Should all LMT languages be included in ISDCF?
- How should code differences/conflicts be resolved?

Next Steps

- Expand coverage for Latin American countries.
 - Add Spanish for each Spanish-speaking country
 - Add Portuguese for each country as supported by use cases
- Explore language use cases for Asian countries.
 - Subject matter experts: please apply!
- Explore more languages and dialects use cases for India and Pakistan.
- Bear in mind what is needed from Unicode for the support of diacritics and non-Latin characters
- Next LMT Working Committee meeting: November 14 @1pm
 - Contact MESAlliance if interested in attending
- Please share your Language needs if not yet covered by LMT

LMT Contact Information + Links

Email Addresses:

- <u>LMT@mesalliance.org</u>
- LMTWG@mesalliance.org
- <u>LMTChairs@mesalliance.org</u>

For General inquiries

For update and edition requests

For direct contact with the Co-chairs

LMT Documentation Links

- <u>https://www.mesalliance.org/language-metadata-table</u> (scroll down for current docs)
- https://www.mesalliance.org/wp-content/uploads/2018/08/HBO-MESA-LMT-Press-Release-FINAL.pdf
- <u>https://www.mesalliance.org/2018/08/07/mesa-publishes-hbo-developed-me-industry-language-metadata-</u> <u>table/</u>
- https://www.mesalliance.org/2018/08/08/hbo-looks-to-demystify-language-metadata/
- <u>https://www.mesalliance.org/2019/02/20/me-journal-the-language-metadata-table-lmt-an-industrywide-effort-to-collaborate/</u>

High-Throughput JPEG 2000 Overview and Demo Michael Smith Wavelet Consulting LLC October 2019

Supported by Kakadu Software (JPEG2000 software SDK provider)

High-Throughput JPEG 2000 Overview

- International Standard published in August 2019
 - Available free-of-charge <u>https://www.itu.int/rec/T-REC-T.814/en</u>

• Enhances JPEG 2000 Part-1

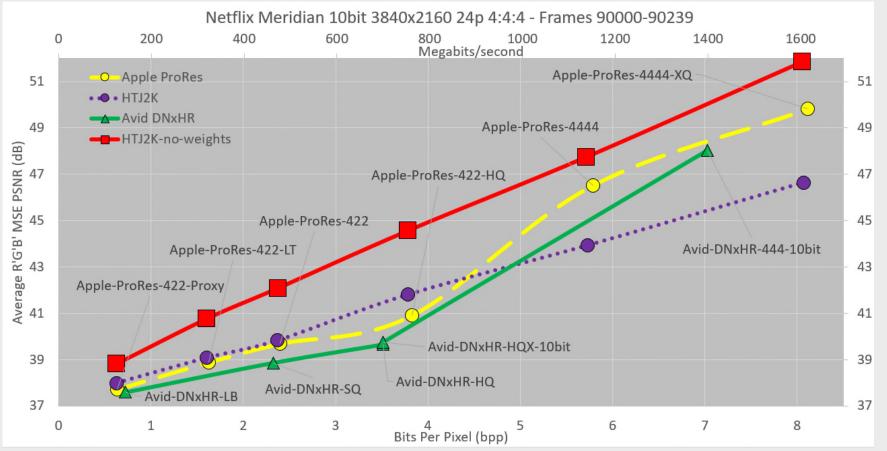
- Replaces the slow block coder with a fast block coder.
- Keeps everything else from JPEG 2000 Part-1.
- Royalty-Free goal like JPEG 2000 Part-1

High-Throughput JPEG 2000 Overview

- Today's demo shows decoding speedups in range 5x to 30x
- Encoding also has similar speedups, but not part of today's demo.
- Demo content shows 5% file-size increase over regular Part-1
- Possible to perform lossless transcoding to/from both lossy and lossless Part-1 code streams, which enables easy adoption paradigms.

High-Throughput JPEG 2000 Example Use-cases and Standards

- **Designed for modern CPU architectures** with vectorized instructions like AVX and SSE.
- Also well-suited to GPU implementation
- Initial hardware design shows significant improvement over JPEG2000 Part-1 hardware design, with similar logic elements and clockfrequency as JPEG-1 ("Original JPEG")
- HTJ2K can be wrapped in MXF, just like JPEG2000 Part-1
 - SMPTE ST422 wrapping standard revision that adds HTJ2K support in progress now, should publish by end of 2019.
 - Status of SMPTE project available here: https://kws.smpte.org/higherlogic/ws/public/projects/581/details


High-Throughput JPEG 2000 Example Use-cases and Standards

- HTJ2K can be used to accelerate IMF workflows and lower the bar to implementing IMF with lower-performance hardware.
 - Lossless transcoding to/from IMF's JPEG2000 Part-1 codestreams, can facilitate realtime playback or editing of existing JPEG2000 Part-1 IMF on laptop computers.
 - IMF could be updated to support HTJ2K directly, more discussion and standards work would be needed (contact me if interested)
- HTJ2K can be used a **ProRes alternative**.

High-Throughput JPEG 2000 Example Use-cases and Standards

- HTJ2K can be generally be used for **any image compression application**.
 - Leverages great flexibility of JPEG2000 Part-1 to support lossy and lossless compression of almost any sample data format (number of channels, resolutions, bitdepths, etc.)
- HTJ2K can be combined with other parts of JPEG2000 family (like Part-2) to support more exotic applications like true floating-point compression or flexible multi-component decorrelating transforms.

High-Throughput JPEG 2000 compared to ProRes and DNxHR

- Apple ProRes compressed with Apple Compressor 4 and decompressed with BlackMagic DaVinci Resolve 15

- HTJ2K and HTJ2K-no-weights compressed and decompressed with Kakadu VXT7A.7B1 Beta demo applications kdu compress and kdu expand

- HTJ2K uses Kakadu's default human-visual-system CSF weightings, while HTJ2K-no-weights is optimized to maximize Average R'G'B' Mean Squared Error PSNR

- Avid DNxHR compressed and decompressed with BlackMagic DaVinci Resolve 15

High-Throughput JPEG 2000 Demo

- Meridian UHD SDR 3840x2160 24p 10bit 4:4:4 BT709 content
 - 12-minute **Netflix mini-movie** created with modern Hollywood production practices.
 - Publicly available from various sources, including IMFUG.COM
- Decoding demo at 3 quality levels
 - J2K Part-1 400Mbs, and equivalent J2K Part-15 (415Mbs)
 - J2K Part-1 800Mbs, and equivalent J2K Part-15 (825Mbs)
 - J2K Part-1 Lossless (3.2Gbs), and J2K Part-15 Lossless (3.5Gbs)
- Demo platform
 - CPU-only software decoding
 - MacBook Pro 15-inch 2018 2.9GHz Intel Core i9 (6-core) 16GB RAM 1TB SSD
- 3 demo clip lengths:
 - 10-seconds
 - 100-seconds
 - 723-seconds (full-clip)

High-Throughput JPEG 2000 Decoding Demo Results

Results for 10-second clip of Meridian UHD SDR 10bit 24p

Test code stream	decoding speed (fps)	native (Mbs)	decoding (Mbs)	HTJ2K speedup factor	HTJ2K bitrate increase	Compression Ratio (X:1)
J2K - Lossy 400Mbs	24	394	393			15.2
HTJ2K - Lossy 400Mbs	111	414	1914	5x	5.2%	14.4
J2K - Lossy 800Mbs	11	785	366			7.6
HTJ2K - Lossy 800Mbs	91	824	3137	9x	4.9%	7.2
J2K – Lossless	2	3543	362			1.7
HTJ2K – Lossless	70	3726	10,932	30 x	5.2%	1.6

High-Throughput JPEG 2000 Implementations

Commercial Software

- Kakadu Software v8 (Fall 2019) will include HTJ2K support www.kakadusoftware.com
- Open Source
 - OpenJPH https://github.com/aous72/OpenJPH

Reference Software

 In development as ISO/IEC 15444-5:2015/PDAM 1 Information technology — JPEG 2000 image coding system: Reference software — Part 5: — Amendment 1: Reference software for High-Throughput JPEG 2000 (HTJ2K)

GPU Implementation

• Described in:

A. Naman and D. Taubman, "Decoding high-throughput JPEG2000 (HTJ2K) on a GPU," in IEEE International Conference on Image Processing, 2019.

• Academic Implementation

• Described in:

O. Watanabe and D. Taubman, "A MATLAB implementation of the emerging HTJ2K standard," in *IEEE Global Conference on Consumer Electronics (GCCE)*, 2019.

ISDCF DCPL testing

Use of Imaging Colorimeter And Imaging Photometer For Cinema testing

Pete Ludé CTO, Mission Rock Digital LLC San Francisco, CA Pete @MissionRockDigital.com

Thanks!!!

Ben Bodner

LG Electronics

Thomas Boysen

RealD Inc

Modern Test Instruments

Used in NATO testing: Westboro Photonics P280 SU

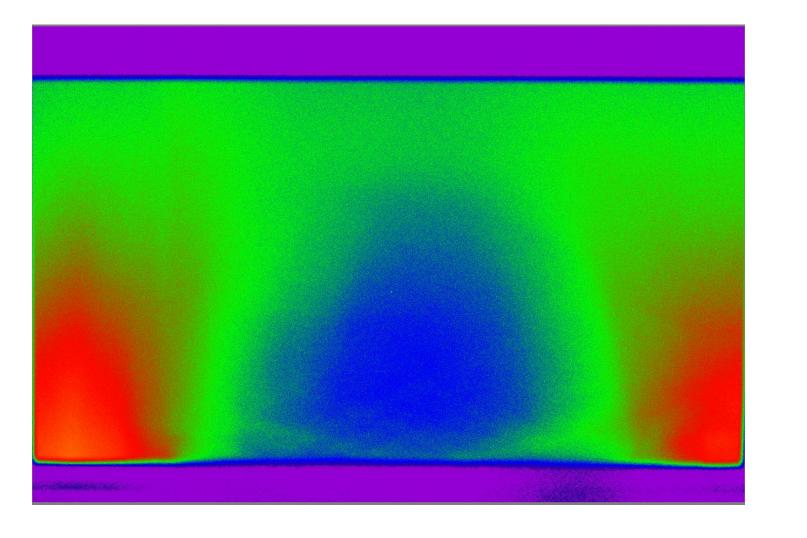
Used in NATO testing: Westboro Photonics WP 6120 E

Imaging Photometer

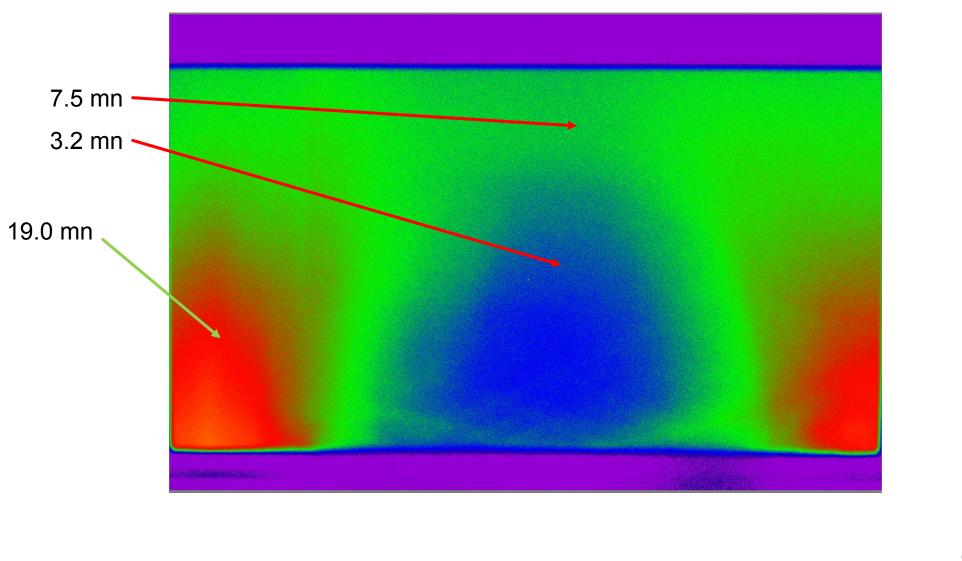
- Luminance Measurement only
- CMOS up to 12 Megapixel
- Detection limit 1 millinit

Imaging Colorimeter

- Luminance and Chromaticity
- Peltier-cooled CCD up to 12 Megapixel
- Detection limit 0.02 millinit


Spot meter results

Example result: 3.1 millinits



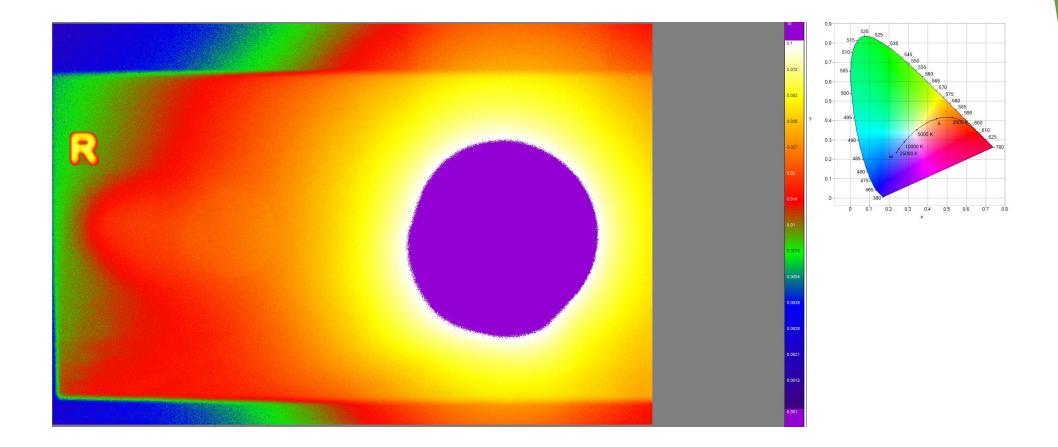
0.1 0.072 .052 .038 .027 0028 0.0021 0.0015

Mission Rock

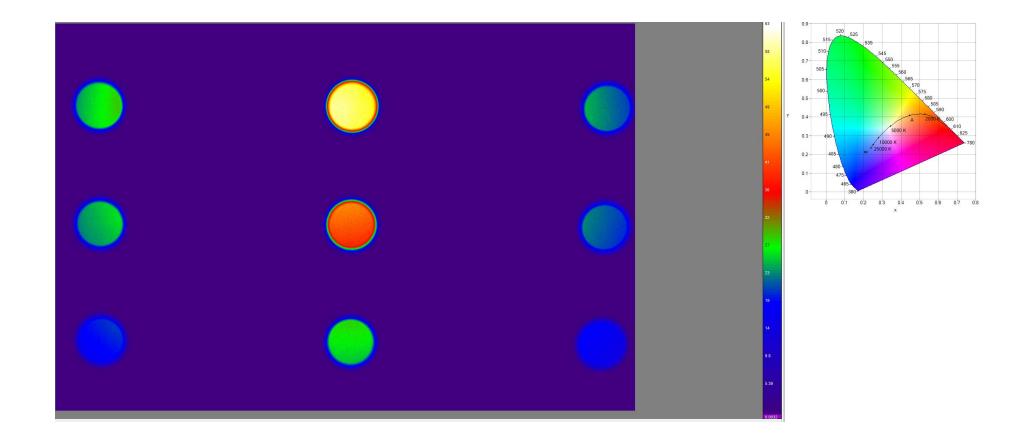
0.1

0.072

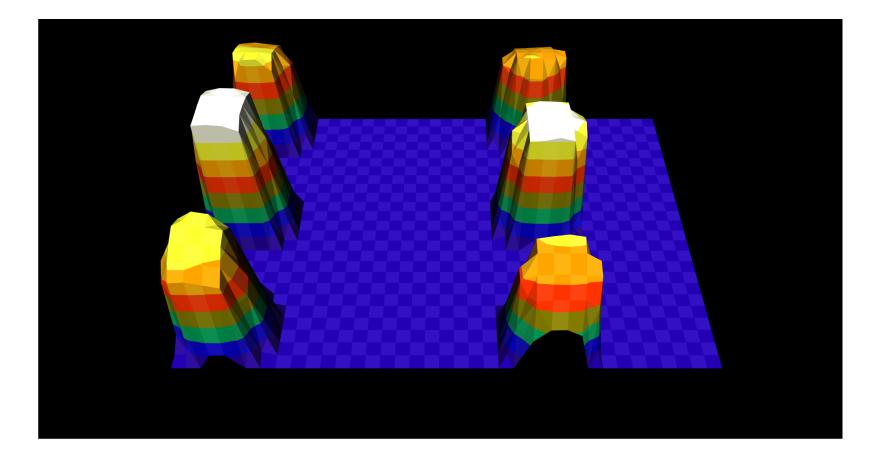
.052

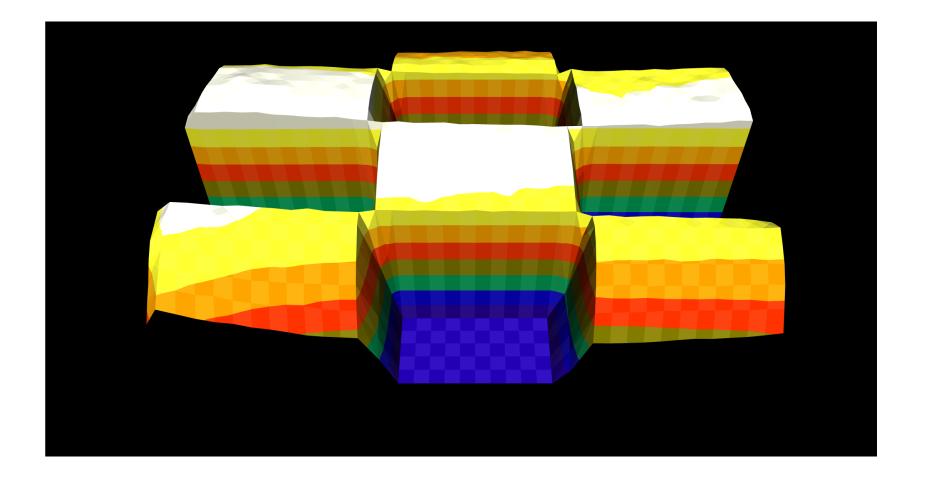

.038

.027


0028

0.0021


0.0015



Some conclusions

- Contemporary Imaging Photometry provides far more useful data!
- ...but the instruments are a bit expensive.
- We should learn more about where this data can be most useful

THANKS to LG Electronics and RealD!

11